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Week 10

0.1 Solving Differential Equations (contd.)
0.1.1 Separation of variables

The technique of separation of variables uses the so-called substitution rule for
integration. The substitution rule is in turn based on the chain rule for differ-
entiation.

Recall that, according to the chain rule (assuming that all functions are suitably
differentiable), we have

d d d
(@) = 5 f () 7u(z)

Example 0.1

. sin(2?) = 2z cos(x?)

Recall also that an indefinite integral is an anti-derivative i.e.

[ (Gr@) ao = so)
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Example 0.2

/Ide = %ac?’ + constant
because

d
d—(%az3 + constant) = z2.
x

Therefore we can see that

Example 0.3

/230 cos(x?)dz = sin(z).
The substitution rule is now obvious because
d d d
[ (Gerga) as = st = [ 4 rwa

Notationally we see that
d

™
in the left hand integral has been replaced by

z)dx

du

in the right hand integral (as if da has been cancelled!)
Thus we get the substitution rule

/F(u)j—zdxﬂ/F(U)du.

Example 0.4

du

u
w1

/21 cos (z%)dz = /cos(u)du = sin(u) = sin(2?)
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Now if, in an IVP
d
% = F(z,y),y(z0) = %o,
we have
F(z,y) = a(z)b(y)
(i.e. the variables can be separated) then we have

Y — a(a)bly) = 575 72 = afa) provided by) # 0

/@%dx/a(x)d:c

/@Z—zdx/ﬁdy
/@dy:/a(x)dx

Then

and we can see that

And we have

Example 0.5
: dy 3y—3 . .
(i) Solve the IVP o y(1) = 2 by separation of variables.
x x
d 3y — 1
dy _3y—-3 dy _ 1
dx T 3y—3dx =z

1 dy 1
—dzr= [ —d
é/Sy—de v /ac v
1 1
dy= [ —d
:’/3y—3 v /x v
:%ln(y—l):ln(m)—i—cl, Ci eR
=1In(y — 1) =3In(z) + C = In(a®) + C
Sy—1= eln(zg)JrC _ eln(z3)eC _ Keln(:vg')’K cR

= y= Ken@®) +1=Kz?+1

The initial values are y(1) = 2 therefore
K+1=2=K=1.

And so the solution to the IVP is y = 23 + 1.
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d
(ii) Solve the IVP d—y = ycos(z),y(0) = 1 by separation of variables.
x

d 1
% = ycos(z) = g—z = cos(z)

= In( )75111( )+C,CeR

=y= eblIl(;C)-‘rC Kebm(;c)

The initial values are y(0) = 1 therefore K = 1.
And so the solution to the IVP is y = e5(®),

0.2 Fixed point iteration.

Let F be a real valued function whose domain is a subset of R. A point p € R
is said to be a fized point of F if F(p) =

Example 0.6

Let F(x) = 22. We see that F'(0) = 0 and F(1) = 1 and so 0 and 1 are fixed
points of F.

If p is a fixed point of F then (p, F(p)) = (p,p) which means that the point
(p,p) will be on the graph of F' and on the straight line y = .

So we can get an idea whether a function F’ has a fixed point or not by sketch-
ing its graph and noting whether it intersects the line y = = or not.
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In certain favourable circumstances (to be discussed) the following iteration
method leads to a fixed point of a given function F(z). That is, we discover a
real number p such that F(p) = p:

First choose xo “close enough” to p (by sketching a graph for instance) then
define:
Tny1 = Fla,),n=0,1,2...

If welet x1 = F(xg), 22 = F(21),23 = F(x3) etc. then in certain circumstances
(to be discussed) the sequence

Loy XL1,L2,X3 ...

will converge to p a fixed point of F(z).

Example 0.7

(i) Use Excel to estimate a solution for x = 1 4 0.5sin(x) by fixed point
iteration.
First graph y = © = 1 + 0.5sin(z) and y = x on the same axes using a
speculative domain until you the two intersect somewhere. Use this chart
to estimate xg.

(ii) Use Excel to estimate a solution for 3 4+ 2sin(x) by fixed point iteration.
First graph 3 4 2sin(z) and y = = on the same axes using a speculative
domain until you the two intersect somewhere. Use this chart to estimate
Zo-
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The following is a basic C++ routine for fixed point iteration:

#include <iostream>
#include <cmath>
#include <iomanip>

using namespace std;
double F(double x)

{
return *x**x**; //place the formula for the function here
}
void main()
{

double x=1; //Initial value for x
double nx,distance;
cout<<setprecision(20);

do

{
nx=F(x);
distance =fabs(nx-x);
X=nx;

}while(distance >0.0000001); //adjust this figure for more or less accuracy
cout<<"The limit is approximately '"<<x<<endl;



