Pat O'Sullivan

Mh4718 Week 10

Week 10

0.1 Solving Differential Equations (contd.)

0.1.1 Separation of variables

The technique of separation of variables uses the so-called substitution rule for integration. The substitution rule is in turn based on the chain rule for differentiation.

Recall that, according to the chain rule (assuming that all functions are suitably differentiable), we have

$$
\frac{d}{d x} f(u(x))=\frac{d}{d u} f(u) \frac{d}{d x} u(x)
$$

Example 0.1

$$
\frac{d}{d x} \sin \left(x^{2}\right)=2 x \cos \left(x^{2}\right)
$$

Recall also that an indefinite integral is an anti-derivative i.e.

$$
\int\left(\frac{d}{d x} f(x)\right) \mathrm{d} x=f(x)
$$

Example 0.2

$$
\int x^{2} \mathrm{~d} x=\frac{1}{3} x^{3}+\text { constant }
$$

because

$$
\frac{d}{d x}\left(\frac{1}{3} x^{3}+\text { constant }\right)=x^{2}
$$

Therefore we can see that

$$
\int\left(\frac{d}{d u} f(u) \frac{d}{d x} u(x)\right) \mathrm{d} x=f(u(x))
$$

Example 0.3

$$
\int 2 x \cos \left(x^{2}\right) \mathrm{d} x=\sin (x)
$$

The substitution rule is now obvious because

$$
\int\left(\frac{d}{d u} f(u) \frac{d}{d x} u(x)\right) \mathrm{d} x=f(u(x))=\int \frac{d}{d u} f(u) \mathrm{d} u .
$$

Notationally we see that

$$
\frac{d}{d x} u(x) \mathrm{d} x
$$

in the left hand integral has been replaced by
d u
in the right hand integral (as if $\mathrm{d} x$ has been cancelled!)
Thus we get the substitution rule

$$
\int F(u) \frac{d u}{d x} \mathrm{~d} x \rightarrow \int F(u) \mathrm{d} u .
$$

Example 0.4

$$
\int \begin{array}{lc}
\frac{d u}{d x} & \stackrel{u}{1} \\
2 x & \cos \left(x^{2}\right) \mathrm{d} x=\int \cos (u) \mathrm{d} u=\sin (u)=\sin \left(x^{2}\right)
\end{array}
$$

Now if, in an IVP

$$
\frac{d y}{d x}=F(x, y), y\left(x_{0}\right)=y_{0}
$$

we have

$$
F(x, y)=a(x) b(y)
$$

(i.e. the variables can be separated) then we have

$$
\frac{d y}{d x}=a(x) b(y) \Rightarrow \frac{1}{b(y)} \frac{d y}{d x}=a(x) \text { provided } b\left(y_{0}\right) \neq 0
$$

Then

$$
\int \frac{1}{b(y)} \frac{d y}{d x} \mathrm{~d} x=\int a(x) \mathrm{d} x
$$

and we can see that

$$
\int \frac{1}{b(y)} \frac{d y}{d x} \mathrm{~d} x=\int \frac{1}{b(y)} \mathrm{d} y
$$

And we have

$$
\int \frac{1}{b(y)} \mathrm{d} y=\int a(x) \mathrm{d} x
$$

Example 0.5

(i) Solve the IVP $\frac{d y}{d x}=\frac{3 y-3}{x}, y(1)=2$ by separation of variables.

$$
\begin{aligned}
\frac{d y}{d x}=\frac{3 y-3}{x} & \Rightarrow \frac{1}{3 y-3} \frac{d y}{d x}=\frac{1}{x} \\
& \Rightarrow \int \frac{1}{3 y-3} \frac{d y}{d x} \mathrm{~d} x=\int \frac{1}{x} \mathrm{~d} x \\
& \Rightarrow \int \frac{1}{3 y-3} \mathrm{~d} y=\int \frac{1}{x} \mathrm{~d} x \\
& \Rightarrow \frac{1}{3} \ln (y-1)=\ln (x)+C_{1}, \quad C_{1} \in \mathbb{R} \\
& \Rightarrow \ln (y-1)=3 \ln (x)+C=\ln \left(x^{3}\right)+C \\
& \Rightarrow y-1=e^{\ln \left(x^{3}\right)+C}=e^{\ln \left(x^{3}\right)} e^{C}=K e^{\ln \left(x^{3}\right)}, K \in \mathbb{R} \\
& \Rightarrow y=K e^{\ln \left(x^{3}\right)}+1=K x^{3}+1
\end{aligned}
$$

The initial values are $y(1)=2$ therefore

$$
K+1=2 \Rightarrow K=1
$$

And so the solution to the IVP is $y=x^{3}+1$.
(ii) Solve the IVP $\frac{d y}{d x}=y \cos (x), y(0)=1$ by separation of variables.

$$
\begin{aligned}
\frac{d y}{d x}=y \cos (x) & \Rightarrow \frac{1}{y} \frac{d y}{d x}=\cos (x) \\
& \Rightarrow \int \frac{1}{y} \frac{d y}{d x} \mathrm{~d} x=\int \cos (x) \mathrm{d} x \\
& \Rightarrow \int \frac{1}{y} \mathrm{~d} y=\int \cos (x) \mathrm{d} x \\
& \Rightarrow \ln (y)=\sin (x)+C, C \in \mathbb{R} \\
& \Rightarrow y=e^{\sin (x)+C}=K e^{\sin (x)}
\end{aligned}
$$

The initial values are $y(0)=1$ therefore $K=1$.
And so the solution to the IVP is $y=e^{\sin (x)}$.

0.2 Fixed point iteration.

Let F be a real valued function whose domain is a subset of \mathbb{R}. A point $p \in \mathbb{R}$ is said to be a fixed point of F if $F(p)=p$.

Example 0.6

Let $F(x)=x^{2}$. We see that $F(0)=0$ and $F(1)=1$ and so 0 and 1 are fixed points of F.

If p is a fixed point of F then $(p, F(p))=(p, p)$ which means that the point (p, p) will be on the graph of F and on the straight line $y=x$.
So we can get an idea whether a function F has a fixed point or not by sketching its graph and noting whether it intersects the line $y=x$ or not.

In certain favourable circumstances (to be discussed) the following iteration method leads to a fixed point of a given function $F(x)$. That is, we discover a real number p such that $F(p)=p$:

First choose x_{0} "close enough" to p (by sketching a graph for instance) then define:

$$
x_{n+1}=F\left(x_{n}\right), n=0,1,2 \ldots
$$

If we let $x_{1}=F\left(x_{0}\right), x_{2}=F\left(x_{1}\right), x_{3}=F\left(x_{3}\right)$ etc. then in certain circumstances (to be discussed) the sequence

$$
x_{0}, x_{1}, x_{2}, x_{3} \ldots
$$

will converge to p a fixed point of $F(x)$.

Example 0.7

(i) Use Excel to estimate a solution for $x=1+0.5 \sin (x)$ by fixed point iteration.
First graph $y=x=1+0.5 \sin (x)$ and $y=x$ on the same axes using a speculative domain until you the two intersect somewhere. Use this chart to estimate x_{0}.
(ii) Use Excel to estimate a solution for $3+2 \sin (x)$ by fixed point iteration. First graph $3+2 \sin (x)$ and $y=x$ on the same axes using a speculative domain until you the two intersect somewhere. Use this chart to estimate x_{0}.

The following is a basic $\mathrm{C}++$ routine for fixed point iteration:

```
#include <iostream>
#include <cmath>
#include <iomanip>
using namespace std;
double F(double x)
{
    return *******; //place the formula for the function here
}
void main()
{
    double x=1; //Initial value for x
    double nx,distance;
    cout<<setprecision(20);
    do
    {
        nx=F(x);
        distance =fabs(nx-x);
        x=nx;
    }while(distance >0.0000001); //adjust this figure for more or less accuracy
    cout<<"The limit is approximately "<<x<<endl;
}
```

